In late-twentieth century Western societies, food was available in abundance. Shops and supermarkets offered a wide choice in products and brands. The fast-food industry had outlets in every neighborhood and village. For those in search of something more exclusive, there were smart restaurants and classy catering services. People chose what they ate and drank with little awareness of the sources or processes involved as long as the food was tasty, nutritious, safe, and sufficient for everyone. These conditions have not always been met over the last century when food shortages caused by economic crises, drought, or armed conflicts and war, occurred in various places. During the second half of the twentieth century, food deficiency was a feature of countries outside the Western world, especially in Africa. The twentieth century also witnessed a different sort of food crisis in the form of a widespread concern over the quality and safety of food that mainly resulted from major changes in production processes, products, composition, or preferences. Technology plays a key role in both types of crises, as both cause and cure, and it is the character of technological development in food and agriculture that will be discussed. The first section examines the roots of technological developments of modern times. The second is an overview of three patterns of agricultural technology. The final two sections cover developments according to geographical differences. Before we can assess technological developments in agriculture and food, we must define the terms and concepts. A very broad description of agriculture is the manipulation of plants and animals in a way that is functional to a wide range of societal needs. Manipulation hints at technology in a broad sense; covering knowledge, skills, and tools applied for production and consumption of (parts or extractions of) plants and animals. Societal needs include the basic human need for food. Many agricultural products are food products or end up as such. However, crops such as rubber or flax and animals raised for their skin are only a few examples of agricultural products that do not end up in the food chain. Conversely, not all food stems from agricultural production. Some food is collected directly from natural sources, like fish, and there are borderline cases such as beekeeping. Some food products and many food ingredients are artificially made through complicated biochemical processes. This relates to a narrow segment of technology, namely science-based food technology. Both broad and narrow descriptions of agriculture are relevant to consider. In sugar production for example, from the cultivation of cane or beets to the extraction of sugar crystals, both traditional and science-based technologies are applied. Moreover, chemical research and development resulted in sugar replacements such as saccharin and aspartame. Consequently, a randomly chosen soft drink might consist of only water, artificial sweeteners, artificial colorings and flavorings, and although no agriculture is needed to produce such products, there is still a relationship to it. One can imagine that a structural replacement of sugar by artificial sweeteners will affect world sugar prices and therewith the income of cane and beet sugar producers. Such global food chains exemplify the complex nature of technological development in food and agriculture.
The Roots of Technological Development
Science-based technologies were exceptional in agriculture until the mid-nineteenth century. Innovations in agriculture were developed and applied by the people cultivating the land, and the innovations related to the interaction between crops, soils, and cattle. Such innovation is exemplified by farmers in Northern Europe who confronted particular difficulties caused by the climate. Low temperatures meant slow decomposition of organic material, and the short growing season meant a limited production of organic material to be decomposed. Both factors resulted in slow recuperation of the soil’s natural fertility after exploitation. The short growing season also meant that farmers had to produce enough for the entire year in less than a year. Farmers therefore developed systems in which cattle and other livestock played a pivotal role as manure producers for fertilizer. Changes in the feed crop could allow an increase in livestock, which produced more manure to be used for fertilizing the arable land, resulting in higher yields. Through the ages, farmers in Northern Europe intensified this cycle. From about the 1820s the purchase of external supplies increased the productivity of farming in the temperate zones. Technological improvements made increases in productivity not only possible but also attractive, as nearby markets grew and distant markets came within reach as a result of the nineteenth century transportation revolution.
An important development at mid-nineteenth century was the growing interest in applying science to agricultural development. The two disciplines with the largest impact were chemistry and biology. The name attached to agricultural chemistry is Justus von Liebig, a German chemist who in the 1840s formulated a theory on the processes underlying soil fertility and plant growth.
He propagated his organic chemistry as the key to the application of the right type and amount of fertilizer. Liebig launched his ideas at a time when farmers were organizing themselves based on a common interest in cheap supplies. The synergy of these developments resulted in the creation of many laboratories for experimentation with these products, primarily fertilizers. During the second half of the nineteenth century, agricultural experiment stations were opened all over Europe and North America. Sometime later, experimental biology became entangled with agriculture. Inspired by the ideas of the British naturalist Charles Darwin, biologists became interested in the reproduction and growth of agricultural crops and animals. Botany and, to a lesser extent, zoology became important disciplines at the experimental stations or provided reasons to create new research laboratories. Research into the reproductive systems of different species, investigating patterns of inheritance and growth of plant and animal species, and experimentation in cross-breeding and selection by farmers and scientists together lay the foundations of genetic modification techniques in the twentieth century. By the turn of the century, about 600 agricultural experiment stations were spread around the Western world, often operating in conjunction with universities or agricultural schools. Moreover, technologies that were not specifically developed for agriculture and food had a clear impact on the sector. Large ocean-going steamships, telegraphy, railways, and refrigeration, reduced time and increased loads between farms and markets. Key trade routes brought supplies of grain and other products to Europe from North America and the British dominions, resulting in a severe economic crisis in the 1880s for European agriculture. Heat and power from steam engines industrialized food production by taking over farm activities like cheese making or by expanding and intensifying existing industrial production such as sugar extraction. The development of synthetic dyes made crop-based colorants redundant, strongly reducing or even eliminating cultivation of the herb madder or indigo plants. These developments formed the basis of major technological changes in agriculture and food through the twentieth century.
Patterns of Technology Development
The twentieth century brought an enormous amount of technology developed for and applied to agriculture. These developments may be examined by highlighting the patterns of technology in three areas—infrastructure, public sector, and commercial factory—as if they were seen in cross section. The patterns are based on combined material and institutional forces that shaped technology. A major development related to infrastructure concerns mechanization and transport. The combustion engine had a significant effect on agriculture and food. Not only did tractors replace animal and manual labor, but trucks and buses also connected farmers, traders, and markets. The development of cooling technology increased storage life and the distribution range for fresh products. Developments in packaging in general were very important. It was said that World War I would have been impossible without canned food. Storage and packaging is closely related to hygiene. Knowledge about sources and causes of decay and contamination initiated new methods of safe handling of food, affecting products and trade as well as initiating other innovations. In the dairy sector, for example, expanding markets led to the growth and mergers of dairy factories. That changed the logistics of milk collection, resulting in the development of on-farm storage tanks. These were mostly introduced together with compression and tube systems for machine milking, which increased milking capacity and improved hygiene conditions. A different area of infrastructure development is related to water management. Over the twentieth century, technologies for irrigation and drainage had implications for improved "carrying capacity" of the land, allowing the use of heavy machinery. Improved drainage also meant greater water discharge, which in turn required wider ditches and canals. Water control also had implications for shipping and for supplies of drinking water that required contractual arrangements between farmers, governing bodies, and other agencies. During the twentieth century, most governments supported their agricultural and food sectors. The overall interest in food security and food safety moved governments to invest in technologies that increased productivity and maintained or improved quality. Public education and extension services informed farmers about the latest methods and techniques. Governments also became directly involved in technological development, most notably crop improvement. Seed is a difficult product to exploit commercially. Farmers can easily put aside part of the harvest as seed for the next season. Public institutes for plant breeding were set up to improve food crops—primarily wheat, rice, and maize—and governments looked for ways to attract private investment in this area. Regulatory and control mechanisms were introduced to protect commercial seed production, multiplication, and trade. Private companies in turn looked for methods to make seed reproduction less attractive to farmers, and they were successful in the case of so-called hybrid maize. The genetic make-up of hybrid maize is such that seeds give very high yields in the first year but much less in the following years. To maintain productivity levels, farmers have to purchase new seed every season. Developments in genetic engineering increased the options for companies to commercially exploit seed production. Most private companies that became involved in genetic engineering and plant breeding over the last three decades of the twentieth century started as chemical companies. Genetic engineering allowed for commercially attractive combinations of crops and chemicals. A classic example is the herbicide Roundup, developed by the chemical company Monsanto. Several crops, most prominently soy, are made resistant to the powerful chemical. Buying the resistant seed in combination with the chemical makes weed control an easy job for farmers. This type of commercial development of chemical technologies and products dominated the agricultural and food sector over the twentieth century. Artificially made nitrogen fertilizers are one such development that had a worldwide impact. In 1908, Fritz Haber, chemist at the Technische Hochschule in Karlsruhe, fixed nitrogen to hydrogen under high pressure in a laboratory setting. To exploit the process, Haber needed equipment and knowledge to deal with high pressures in a factory setting, and he approached the chemical company BASF. Haber and BASF engineer Carl Bosch built a crude version of a reactor, further developed by a range of specialists BASF assigned to the project. The result was a range of nitrogen fertilizer products made in a capital and knowledge-intensive factory environment. This type of development was also applied to creating chemicals such as DDT for control of various pests (dichloro-diphenyltrichloroethane), developed in 1939 by Geigy researcher Paul Muller and his team. DDT may exemplify the reverse side of the generally positive large-scale application of chemicals in agricultural production—the unpredictable and detrimental effects on the environment and human health. The commercial factory setting for technology development was omnipresent in the food sector. The combination of knowledge of chemical processes and mechanical engineering determined the introduction of entirely new products: artificial flavorings, products, and brands of products based on particular food combinations, or new processes such as drying and freezing, and storing and packaging methods.
Patterns of Technology Development in the Western World
Technological developments in agriculture and food differ with regard to geography and diverging social and economic factors. In regions with large stretches of relatively flat lands, where soil conditions are rather similar and population is low, a rise in productivity is best realized by technologies that work on the economies of scale. The introduction of mechanical technologies was most intensive in regions with these characteristics. Beginning early in the twentieth century, widespread mechanization was a common feature of Western agriculture, but it took different forms. In the Netherlands, for example, average farm size was relatively small and labor was not particularly scarce. Consequently, the use of tractors was limited for the first half of the twentieth century as emphasis was placed on improved cultivation methods. Tractors became widely used only after the 1950s when equipment became lighter and more cost-effective and labor costs rose sharply. The result was an overall increase of farm size in these regions as well. The Dutch government changed the countryside with a land policy of connecting and merging individual parcels as much as possible. This huge operation created favorable conditions for expansion; but where the land was already under cultivation, the only way to expand was to buy up neighboring farms. The effect was a considerable reduction in the number of farm units. An exception to this process was the Dutch greenhouse sector, in which improvements in construction, climate regulation, and introduction of hydroponic cultivation, increased production without considerable growth of land per farm unit. The Dutch greenhouse sector is also an exemplary case of technological support in decision making and farm management. In Western countries a vast service sector emerged around agriculture and food. This process in fact started early in the twentieth century with the rise of extension services, set up as government agencies or private companies. Experimental methods based on multivariate statistics, developed by the British mathematician Karl Fisher, are the major tool in turning results of field experiments into general advisories. In keeping with the development of modern computers, digital models of crop growth and farming systems became more effective. Computer programs help farmers perform certain actions and monitor other equipment and machinery; yet even in the most technologically advanced greenhouses, the skilled eye of the farmer is a factor that makes a considerable difference in the quality and quantity of the final product. The means by which agriculture in the West raised productivity have been questioned. Doubts about the safety of food products and worries over the restoration of nature’s capacity became recurrent issues in public debate. Moreover, technological advances in tandem with subsidies resulted in overproduction, confronting national and international governing bodies with problems in trade and distribution, and a public resistance against intensive agriculture, sometimes called agribusiness. Technology is neither good nor bad; much of the knowledge underlying technologies with a detrimental effect also helps detect polluting factors and health hazards. Although a substantial part of research and technological efforts are aimed at replacing and avoiding harmful factors, many such ‘‘clean’’ technologies are commercially less interesting to farmers and companies. Subsidies and other financial arrangements are again being used to steer technology development, this time in the direction of environmentally friendly and safe forms of production.
Patterns of Technology Development in Less Developed Countries
From the beginning of the twentieth century, scientific and technological developments in the agricultural and food sector were introduced to less developed countries either by Western colonizing powers or by other forms of global interaction. The search for improved farming methods and new technology were mostly institutionalized at existing botanical gardens and established in previous centuries. Plant transfer and economic botany were a major modality of twentieth century technological improvement in less developed countries.
The early decades of the century featured an emphasis on technological improvement for plantation agriculture. Plantation owners invested in scientific research for agriculture, often supported by colonial administrations. The gradual abolition of slavery during the nineteenth century, increasing labor costs, was a reason to invest in technology. Other factors were more specific to particular sectors; for example, the rise of European beet sugar production encouraging cane sugar manufacturers to invest in technological improvement. Another example was the emergence of the automobile industry, which initiated a boom in rubber production. Most colonial administrations launched programs, based on the combination of botanical and chemical research, to improve food crop production in the first decades of the twentieth century. It was recognized that dispersion of new technologies to a small number of plantation owners was different from initiating change among a vast group of local food crop producers. The major differences concerned the ecology of farming (crop patterns and soil conditions) and the socioeconomic conditions (organization of labor or available capital). Agronomists had to be familiar with local farming systems, occasionally resulting in pleas for a technology transfer that would better meet the complexity of local production. The overall approach, however, was an emphasis on improvement of fertilization and crop varieties. Transfer of the Western model gained momentum in the decades after World War II. Food shortages in the immediate postwar years encouraged European colonial powers to open up large tropical areas for mechanized farming. Unfortunately, the result was largely either a short-lived disaster, as in the case of the British-run groundnut scheme in Tanzania, or a more enduring problem, as in case of the Dutchrun mechanized rice-farming schemes in Surinam. The 1940s also saw the beginnings of a movement that came to be known as the "green revolution."
Driven by the idea that hunger is a breeding ground for communism, American agencies initiated a research program for crop improvement, primarily by breeding fertilizer-responsive varieties of wheat and rice. Agencies were put together in a Consultative Group on International Agricultural Research (CGIAR). Technological progress was realized by bringing together experts and plant material from various parts of the world. Modified breeding techniques and a wide availability of parent material resulted in highyielding varieties of wheat and rice. Encouraged by lucrative credit facilities, farmers, especially in Asia, quickly adopted the new varieties and the required chemicals for fertilization and pest control. Research on the adoption process of these varieties made clear that many farmers modified the seed technology based on specific conditions of the farming systems. In areas where such modifications could not be achieved—primarily rice growing regions in Africa—green revolution varieties were not very successful. Based on these findings, CGIAR researchers began to readdress issues of variation in ecology and farming systems. This type of research is very similar to that done by colonial experts several decades earlier. However, because of decolonization and anti-imperialist sentiments among Western nations, much of this earlier expertise has been neglected. This is just one of the opportunities for further research in the domain of agriculture and food technology.
By Harro Maat in "Encyclopedia of 20th Century Technology", Colin A. Hempstead (editor), Routledge, London-New York, 2005, p.6-11 vol. 1. Adapted and illustrated to be posted by Leopoldo Costa.
No comments:
Post a Comment
Thanks for your comments...